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Abstract 

In this palger we discuss the  clock paradox within the  f ramework o f  the  general theory of  
relativity. It is shown tha t  in general the aging asymmetry exists. We also argue tha t  the  
clock paradox,  according to Mach's  principle, is essentially a cosmological  problem. 

1. Introduction 

The problem of the clock paradox in the relativity theory is more than sixty 
years old. Perhaps no other problem in relativity has had so many papers 
written about it. There is no need for us to review the historical development of 
this problem here. Some remarks, however, must be made. It seems that the 
majority of physicists (Tolman, 1934; Arzeties 1966; Melter, 1967), including 
Einstein (1918)himself, tend to agree that the aging asymmetry in the con- 
cerned problem does exist. Most of the authors have, however, restricted their 
discussions to the special theory of relativity (STR) or at most to a Newtonian 
approximation about the time retardation based on the general theory of 
relativity (GTR). Such a discussion, of course, is ambiguous and incomplete. 
Recently, Wu and Lee (1972) have intended to resolve this problem on a more 
general footing. But, as pointed out by Sachs (1973), their conclusion, based 
on a certain approximation, also is ambiguous. This approximation actually 
still limits the problem within the framework of STR. 

Sachs himself has tried to resolve the clock paradox by a general argument 
from the view of GTR (1971). His result is rather astonishing: There is no 
aging asymmetry at all! This conclusion has caused a great dispute from many 
physicists (Terrell et aL, 1972). Actually, Sachs holds a different view toward 
the fundamental field quantities ga~ from the conventional GTR (Sachs 1967, 
1968, 1970). He argues that it follows from the features of the transformation 
group that underlies GTR, that the symmetric-tensor representation cannot be 
the most general representation of this theory. This is because the invariance 
group (the Einstein group) is a 16-parameter Lie group and the basic equations 
that describe the metrical field necessarily entail 16 (rather than 10) relations 
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at each space-time point. The fundamental reason for the reduction from 16 
to 10 relations in GTR is the further symmetry that is imposed on the formalism 
regarding covariance with respect to space or time reflections. Since the principle 
of general relativity refers to frames of reference that are in relative m o t i o n - a  
presumably continuous enti ty-the reflection symmetry elements in the invari- 
ance group are an undue restriction. With such an opinion, Sachs noticed that 
the variables that solve the underlying field equations must be defined, most 
primitively, in terms of a set of four quarternion fields, q~(x) ,  which behave 
geometrically as a four-vector in a Riemannian space, but behave algebraically 
as the quarternions. Since each of the quarternions is a Hermitian 2-dimensional 
matrix and thereby depends on four real fields in their matrix components, it 
follows that the quarternion field equations are in terms of 4 x 4 = 16 relations 
at each x, in accordance with the previous argument. In Sachs' theory, in order 
to incorporate properly the algebraic properties of the quarternion into the 
metric of a Riemannian Space, the differential interval in four-space is defined 
as  

ds = qo~(x) dx °~ (1.1) 

When this is multiplied by its conjugate quarternion ds, one obtains a real 
number which corresponds to the quadratic form of the line element in the 
conventional GTR 

ds ds = - - ~ ( q a ~  + q ~ )  clx ~ dx ~ ~ ge~ dx ~ d J  (1.2) 

The formula (1.1) and its conjugate can be recognized as the factorization of the 
squared interval in GTR. This is precisely the same as that the Klein-Gordon 
equation in STR can be factorized into a pair of conjugated two-component 
spinor equations, which in turn leads to the conventional form of the Dirac 
equation. Regardless of what the theory implies, it at least provides a way to 
factorize the squared interval in GTR. Sachs has used the factorized ds (or ~s) 
to discuss the clock paradox. He considers a closed path line integral 

ds = ~ qa dxa in four-space, and shows that it must vanish. This indicates no 
aging asymmetry  in the problem of clock paradox; i.e., there is no paradox at 
all. To reach this result, Sachs believes that given appropriate boundary con- 
ditions qa, which are solvable from the field equations, must be analytic at 
every space-time point. 

In this paper, we will also adopt the quarternion representation of the 
differential interval as a factorization of the squared interval in GTR. We, 
however, contend that the consideration of the closed path line integral in 
Sachs' argument is not rigorous. The main point is that a closed path line 
integral for resolving the clock paradox (as Sachs claimed) cannot be arbitrarily 
drawn. We believe that a closed path line integral with physical significance in 
the problem of the clock paradox exists only in the space-tinle with an intrinsic 
property of rotation (see Section 2). This immediately yields ~ ds 4- 0 from 
the quarternion representation of the differential interval; i.e., there is aging 
symmetry. We further argue that the clock paradox is essentially a cosmo- 
logical problem according to Mach's principle. From such a view the problem 
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becomes so fundamental that it is not strange why people have been puzzled 
for such a long period. 

2. The Significance of  § ds 

First, we must make it clear what the significance of a closed path line 
integral in the concerned question is. Let us recall the problem of the clock 
paradox: Consider a pair of identical clocks, which initially have no relative 
motion at the same point, projected into two different trajectories to meet 
f'matly at another point without relative motion in the space-time. Will the 
two time intervals elapsed be different? Win they both agree exactly on that 
result? The pair of identical clocks can be two identical twins, or two identical 
decaying particles, or two identical atomic clocks, etc. Anyhow, they must 
be physical entities that can show the property of time flowing. Hence the 
closed path line integral in the space-time cannot be fictitious. It must move 
along with the physical entity. And when we move along with the physical 
entity to complete a dosed path, the space-time, in which the physical entity 
is embedded, must contain an intrinsic property of rotation. In Section 4 we 
will be more explicit in our words in describing an artificial arrangement of the 
line integral. 

The situation is more analogous to the case of  irrotational and rotational 
flow in fluid mechanics. The flow can be irrotational when we consider a 
fictitious closed contour and find the associated vorticity vanished, But if we 
want to move along with a fluid element and complete a closed contour, the 
associated flow is necessarily rotational. We therefore assert that in the dis- 
cussion of the clock paradox a closed path line integral ~ ds in four-space is 
physically significant only when the ambient space-time possesses the intrinsic 
rotational character. We also have to emphasize that while the rotation of the 
ambient space-time follows from the existence o f~  ds, it does not imply that 
the existence of ~ ds follows from the existence of rotation. 

3. The Rotating Space-Time 

The rotation mentioned in the previous section is an intrinsic character of the 
space-time. In GTR it must be explicitly stored in the expression of the funda- 
mental field quantities-the metric tensor g~#. To simplify the discussion, we 
choose a reference frame such that the squared interval can be written as 

ds2=c2 dt2 +gijdxi dxi +goidx° dxi +giodxi dx° (3.1) 

which the Latin indices run from 1 to 3. This reference frame, in which 
goo = 1, certainly can be found from the coordinate transformation. To 
visualize the intrinsic character of rotation, we further choose the so-called 
comoving reference frame, i.e. in such a frame the trajectories of the rest 
matter are geodesics in the four-space. The geodesic equations are 

d2x c~ d.x[ 3 dx"l 
- -  + P ~  - -  - - =  0 ( 3 . 2 )  
ds 2 ds ds 
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or written in terms of  the four-velocity u s = dxa/ds,  

du--2 * r ~  u ~u~ = 0 (3.3) 
ds 

The four-velocity o f  the rest matter is u s = (c, 0, 0, {3). Substituting this in 
equation (3.3) and f romgoo = 1, we find 

g0k, o = 0 (3.4) 

Sog0o = 1, and gok ' 0 = 0 are the conditions for a reference frame to be 
comoving. This includes four conditions, and certainly can always be fixed 
through four coordinate transformations x a ~ x '% 

In the comoving reference frame, the rotational character can be easily 
recognized from the metric tensorsga~. In fluid mechanics, the rotational 
character is determined from the curl of  the velocity field v x v - t h e  vorticity. 
In the geometrical field of  the four-space, we can construct a corresponding 
four-vector, or four-vorticity 

eC~#v3, 
~ - -ea"V'r ( UuUv "r } (3.5) x/-g (u.u~,.r} = 

where e auv't = -ea"VT /x / -g ,  g is the determinant ofga~,  

0, if any two indices are equal. 
ec~uv7 = +1, according to (age'/) being an even or odd 

permutation of (0, 1, 2, 3). 

{ uuuv, ~,} = ~ (u.(uu,.~ -u~ , . )  + u.(u~,,. - u., ~,) 

+ u,l(uu, v - uv,u)), 

Ouu 
uu, ~ = ax ~ , etc. 

In the comoving system, us = c(1, go1, goz, go3)- Equation (3.5) is equivalent 
to 

[2~ = -e~U U~{gougov,'r}, with goo = 1 (3.6) 

If  any component of  g2 a is not  zero, the space-time obviously possesses the intrin. 
sic rotational character. In fact, this rotational character can be understood in 
better perspective when we study the motion of  a test particle. However, we 
do not bother ourselves with this problem here. 

From equation (3.6), we reach the conclusion: For all i ¢ ], i f  the equality 

goi,] = go], i (3.7) 

holds, then the corresponding space-time is not  rotating, otherwise, it is 
rotating. 
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4. The Proof  o f  ~ ds • 0 

The motion of a free physical entity in a four-space is determined by the 
principle of least action 

8 j d s  = 0 (4.1) 

From this we obtain the geodesic equations (3.2) in GTR. If a physical 
entity starts from point 1 to point 2 in the four-space, equation (4.1) then 
gives only a line integral 2 

g f  ds (4.2) 
1 

where the subindex g represents the geodesic line. 
However, for a pair of identical clocks, we actually consider two different 

paths from the point 1 to 2 in the four-space. This must correspond to two 
different geodesic lines, and hence, correspond to two different four-spaces. 
How can we consider these two four-spaces as a space-time with rotation? We 
can make such an artificial consideration: Consider the pair of clocks identified 
as A and B. The clock A moves along the geodesic line gl and B along g2- Let 
us look at A and neglect B first. We consider A moves along the reversed 
geodesic line - g l  from the point 2 to 1. This corresponds to a space-time 
which is the time reversal of the original one. When the point 1 is reached, we 
begin to look at B ( -A  actually at this point) and forget A. The clock B moves 
along the geodesic line g2 and Finally arrives at the point 2. Since this is a 
closed path, the embedding space-time must be rotating (i.e. equation (3.6) 
does not hold completely in the space-time region that we are interested). 

Since ds 2 =gap dx °' dx#, so § ds = ~(.go~ dx c' dxg~) 1/2 There is no general 
way to get rid of the square root in the integrand of the closed path line 
integral We have seen, however, in the Introduction that the product of the 
quarternion representation of the differential interval and its conjugate in 
Sachs' theory is one-one corr~pondent to the squared interval in GTR. So it 
is natural to consider ds and ds as factors o f d s  2. Instead of manipulating 

ds = !f(g~ d x'~ dx(1) 1 ]2, we can therefore calculate ~ ds = ~qa dx% For this 
we follow the same line as Sachs'. But we hold a different point of view. Sachs 
uses the quarternion representation as the basis of his relativity theory. We use 
it only because of its advantage in factorizing the squared interval ds 2 in GTR. 

Now, consider ~qc~ dx  ~. It is trivial that this closed path line integral in the 
four-space vanishes if (and only if) qc, dx  c~ is an exact differential. And this is 
the case if (and only if) 

qa, (t = q~, o~ 1,4.3) 
everywhere in the interested region. This is an elementary theorem in calculus. 
In the following, we prove that equations (3.7) and (4.3) are equivalent in the 
comoving reference frame. 

In the comoving reference frame, g00 = 1, so qo must be the unit two- 
dimensional matrix. Further, since ga~ ~ --~(qacT~ + q ~ a ) ,  the condition 
gok, o = 0 for the comoving reference frame is equivalent to qk, o = 0. From this 
information it is easy to see that equation (3.7) is equivalent to qi, k = qk,i. 



166 K.Y. Ft~ 

This, together with the fact that q o is the unit two-dimensional matrix, yields 
the result that equations (3.7) and (4.3) are equivalent. 

Because the closed path line integral exists only in a rotating space-time as 
we have emphasized in Section 2, we conclude that ~ ds ¢- O. 

Our proof of~  ds :~ O, although based on the choice of  the comoving refer- 
ence frame, is generally true, of course, since ds is a Lorentz invariant. The sign 
of ~ds which is determined from the sense of the rotation in turn determines 
which clock (A or B) is older. 

5. Mach " s Principle and Cosmology 

Sachs has made the following statements in his argument about the illogic 
of  asymmetric aging: Some internal physical processes within a physical entity 
are responsible for the physical effect we call 'aging'. Relativity theory does 
not claim that any effect of these physical processes on aging are in any way 
affected by the relative motion of some observers who may be looking at the 
considered system from a moving platform. To accept the aging asymmetry 
means a regression to the classical view in which time is indeed an absolute 
measure with its own physical manifestations. 

These statements may not be true if Mach's principle is incorporated 
properly in GTR. Previously, we verify the aging asymmetry by considering 
the rotation of a space-time. But how can a space-time rotate? With respect 
to what does it rotate? These questions on a noninertial reference frame are 
very old-older than the clock paradox. One must retrace back to Newton's 
time when his contemporary, Leibnitz, argued with him about the absolute 
reference frame. The nineteenth century philosopher Math has tried to resolve 
this dispute from a relativistic view and reached the conclusion: The inertial 
property of a material body is determined by the distribution of the matter in 
the universe. Einstein took Mach's principle seriously, and it was his hope that 
this principle could somehow be incorporated into GTR. In cosmology, how- 
ever, there is the so-called G6del solution (Godel, 1949) which satisfies the 
Einstein field equations but violates Mach's principle. This gives an indication 
that Mach's principle is not completely incorporated into GTR. The comoving 
matter in a G6del universe undergoes an intrinsic uniform rotation. The same 
questions then arise: How can the universe rotate? With respect to what does it 
rotate? Some physicists (e.g., Wheeler, 1964) regard that Mach's principle must 
be incorporated into GTR by imposing appropriate boundary conditions. This 
makes Mach's principle become a filter in choosing the cosmological model. 
Some other physicists take different views. For example, Dicke and Brans 
consider that Mach's principle can be incorporated into GTR through the 
introduction of a long-range scalar field. This is the theoretical basis of the 
Brans-Dicke theory (1961). 

The rotational character in the clock paradox, however, differs from that 
in the G6del universe, in which the intrinsic rotation represents a bulk rotation 
of the whole universe. The rotation in our discussion of the clock paradox must 
be local. It represents a local rotation with respect to the distant stars and the 
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whole universe. According to Mach's principle a certain kind of interaction 
must exist between the matter of the whole universe and the physical entity 
in the local region. This interaction can be transmitted through the imposition 
of appropriate boundary conditions or through the scalar field in the Brans- 
Dicke theory. Hence, cosmological interaction also comes onto the stage and 
is responsible for the 'aging' process. This contradicts with what Sachs says 
that only internal physical processes are responsible for the 'aging' process. To 
accept the aging asymmetry does not mean a regression to the absolute time. 

We remark that the problem of the clock paradox is essentially a cosmological 
problem. Only when the interaction between the considered physical entities 
and the mass-energy distribution of the whole universe is explicitly expressed 
can the clock paradox be completely solved. In this view, the problem becomes 
so fundamental that it is no wonder why people have long been puzzled. 

6. Discussions 

We shall cast more doubts on Sachs' mathematical proof of ~ ds = 0. Sachs 
had restricted his discussion in the two-dimensional differential interval ds = 
q 1 dx 1 + q 2 dx2. He claims that this interval can be written as Ref(z)  dz where 
f ( z )  is a single-valued function o fz  = x a + ix z that is analytic at all points in 
and on the closed curve of integration. This automatically warrants ~ ds = O. 
Such an argument is not rigorous for the following reasons: (a) The condition 
for the existence of a function like f (z)  is that each of the four real fields that 
make up the quarternion variables must be separately single valued and 
analytic. This is actually condition (3.7). It is easy to see from our discussion 
that this does not hold in general. (b) It seems to us that Sachs did not consider 
the cosmological effect into boundary conditions. The analylicity of the 
functionf(z) then actuaUy can be extended to infinity in space. Doesn't it 
imply that f(z)  is a constant function? These two difficulties have been 
eliminated in this paper. 

Equation (3.7) is a criterion to discover the intrinsic character o f rotation. 
When it is not satisfied one has the necessary, but insufficient, condition to 
complete a closed path line integral. The sufficient condition requires a more 
thorough consideration. However, the necessary condition is sufficient in 
proving the aging asymmetry. 

Our result is consistent with the majority of conclusions from the consider- 
ation of STR. This corresponds to the circumstance that the noninertial effect, 
or the cosmological interaction, is weak. In this limit one can treat the problem 
as coordinate transformations between inertial reference frames in the spirit 
of STR. When the noninertial effect, or the cosmological interaction, is strong, 
the problem becomes cosmological. The problem calls a proper incorporation 
of Mach's principle into GTR. 

Philosophers may think that the aging asymmetry is hardly understandable, 
We think this is not true. Let us make a philosophical remark: Agreat  life 
lives longer because of its stronger cosmological sense. 
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